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Abstract. The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate
because itis based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypothe-
ses. TheCONDENSATION algorithm uses “factored sampling”, previously applied to the interpretation of static
images, in which the probability distribution of possible interpretations is represented by a randomly generated set.
CONDENSATION uses learned dynamical models, together with visual observations, to propagate the random set
over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the
algorithm runs in near real-time.

1. Tracking Curves in Clutter models of a moving object are available, they can be
matched effectively to image data, though usually at
The purpose of this papeis to establish a stochas- considerable computational cost (Hogg, 1983; Lowe,
tic framework for tracking curves in visual clutter, us- 1991; Sullivan, 1992; Huttenlocher et al., 1993). Once
ing a sampling algorithm. The approach is rooted in an object has been located approximately, tracking it
ideas from statistics, control theory and computer vi- in subsequentimages becomes more efficient computa-
sion. The problem is to track outlines and features of tionally (Lowe, 1992), especially if motion is modelled
foreground objects, modelled as curves, as they moveas well as shape (Gennery, 1992; Harris, 1992). One
in substantiaklutter, and to do it at, or close to, video important facility is the modelling of curve segments
frame-rate. This is challenging because elements in which interact with images (Fischler and Elschlager,
the background clutter may mimic parts of foreground 1973; Yuille and Hallinan, 1992) or image sequences
features. In the most severe case of camouflage, the(Kass et al., 1987; Dickmanns, and Graefe, 1988).
background may consist of objects similar to the fore- This is more general than modelling entire objects but
ground object, for instance, when a person is moving more clutter-resistant than applying signal-processing
past a crowd. Our approach aims to dissolve the result- to low-level corners or edges. The methods to be dis-
ing ambiguity by applying probabilistic models of ob- cussed here have been applied at this level, to segments
ject shape and motion to analyse the video-stream. Theof parametric B-spline curves (Bartels et al., 1987)
degree of generality of these models is pitched care- tracking over image sequences (Menet et al., 1990;
fully: sufficiently specific for effective disambiguation  Cipolla and Blake, 1990). The B-spline curves could,
but sufficiently general to be broadly applicable over in theory, be parameterised by their control points. In
entire classes of foreground objects. practice, this allows too many degrees of freedom for
stable tracking and it is necessary to restrict the curve
to a low-dimensional paramet&r for example, over
1.1. Modelling Shape and Motion an affine space (Koenderink and Van Doorn, 1991;
Ullman and Basri, 1991; Blake et al., 1993), or more
Effective methods have arisen in computer vision for generally allowing a “shape-space” of non-rigid mo-
modelling shape and motion. When suitable geometric tion (Cootes et al., 1993).
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Finally, prior probability densities can be defined andcan be appliedto curves (Terzopoulos and Szeliski,
over the curves (Cootes et al., 1993) represented 1992; Blake et al., 1993). These solutions work rela-
by appropriate parameter vectoxs and also over tively poorly in clutter which causes the density fqr
their motions (Terzopoulos and Metaxas, 1991; Blake to be multi-modal and therefore non-Gaussian. With
et al., 1993), and this constitutes a powerful facility simple, discrete features such as points or corners com-
for tracking. Reasonable defaults can be chosen for binatorial data-association methods can be effective
those densities. However, it is obviously more satisfac- with clutter but combinatorial methods to do not ap-
tory to measure or estimate them from data-sequencesply naturally to curves. There remains a need for an
(X1, X2, . ..). Algorithms to do this, assuming Gaussian appropriately general probabilistic mechanism to han-
densities, are known in the control-theory literature dle multi-modal density functions.

(Goodwin and Sin, 1984) and have been applied in

computer vision (Blake and Isard, 1994; Baumbergand 1 3 Temporal Propagation of Conditional Densities
Hogg, 1995). Given the learned prior, andaoserva-

tion densitythat characterises the statistical variability The kaiman filter as a recursive linear estimator is a
ofimage dat& given a curve state, a posterior distri-  gneia| case, applying only to Gaussian densities, of
bution can, in principle, be estimated fargivenz: at 5 more general probability density propagation pro-
successive timets cess. In continuous time this can be described in terms
of diffusion, governed by a “Fokker-Planck” equation
1.2. Kalman Filters and Data-Association (Astrom, 1970), in which the density fog drifts and
spreads under the action of a stochastic model of its
Spatio-temporal estimation, the tracking of shape and dynamics. In the simple Gaussian case, the diffusion
position over time, has been dealt with thoroughly by is purely linear and the density function evolves as
Kalman filtering, in the relatively clutter-free case in a Gaussian pulse that translates, spreads and is rein-
which p(x;) can satisfactorily be modelled as Gaussian forced, remaining Gaussian throughout, as in Fig. 1, a
(Dickmanns and Graefe, 1988; Harris, 1992; Gennery, process thatis described analytically and exactly by the
1992; Rehg and Kanade, 1994; Matthies et al., 1989) Kalman filter. The random component of the dynamical

deterministic drift

p(x) pix)

stochastic diffusion

T\

reactive effect of measurement

Figure1 Kalman filter as density propagation: in the case of Gaussian prior, process and observation densities, and assuming linear dynamics,
the propagation process of Fig. 2 reduces to a diffusing Gaussian state density, represented completely by its evolving (multivariate) mean and
variance—precisely what a Kalman filter computes.
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Figure 2 Probability density propagation: propagation is depicted here as it occurs over a discrete time-step. There are three phases: drift due
to the deterministic component of object dynamics; diffusion due to the random component; reactive reinforcement due to observations.

model leads to spreading—increasing uncertainty— is X; = {Xa, ..., X;}. Similarly, the set of image fea-
while the deterministic component causes the density tures attime is z; with historyZ; = {z;, ..., z;}. Note
function to drift bodily. The effect of an external obser- that no functional assumptions (linearity, Gaussianity,
vationz is to superimpose a reactive effect on the dif- unimodality) are made about densities in the general
fusion in which the density tends to peak in the vicinity treatment, though particular choices will be made in
of observations. In clutter, there are typically several due course in order to demonstrate the approach.
competing observations and these tend to encourage a

non-Gaussian state-density (Fig. 2).

The CoNDENSATION algorithm is designed to ad-
dress this more general situation. It has the striking
property that, generality notwithstanding, itis a consid-
erably simpler algorithm than the Kalman filter. More-
over, despite its use of random sampling which is
often thought to be computationally inefficient, the
CONDENSATION algorithm runs in near real-time.

This is because tracking over time maintains relatively __io new state is conditioned directly only on the im-

tight distributions for shape at successive time-steps, majately preceding state, independent of the earlier
and particularly so given the availability of accurate, history. This still allows quite general dynamics, in-

learned models of shape and motion. cluding stochastic difference equations of arbitrary or-
der; we use second order models and details are given
later. The dynamics are entirely determined therefore

2.1. Stochastic Dynamics
A somewhat general assumption is made for the prob-

abilistic framework that the object dynamics form a
temporal Markov chain so that

PXt | Xi—1) = PXt | Xe—1) 1)

2. Discrete-Time Propagation of State Density by the form of the conditional densify(x; | X;_1). For
instance,

For computational purposes, the propagation process 1

must be set out in term.s of discrete t|mél'he st_ate of P(X¢ | Xe_1) & exp(——(xt —Xeq — 1)2>

the modelled object at tintés denotec; and its history 2
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represents a one-dimensional random walk (discrete andk; is a normalisation constant that does not depend
diffusion) whose step length is a standard normal vari- onx;. The validity of the rule is proved in the appendix.
ate, superimposed on a rightward drift at unit speed. The propagation rule (4) should be interpreted sim-
Of course, for realistic problems, the statés multi- ply as the equivalent of the Bayes’ rule (6) for inferring
dimensional and the density is more complex (and, in posterior state density from data, for the time-varying
the applications presented later, learned from training case. The effective prigp(x; | Z;_1) is actually a pre-
sequences). diction taken from the posteriqr(x;_1 | Z;_1) fromthe
previous time-step, onto which is superimposed one
time-step from the dynamical model (Fokker-Planck
drift plus diffusion as in Fig. 2), which is expressed in
(5). Multiplication in (4) by the observation density
p(z; | X¢) in the Bayesian manner then applies the re-
active effect expected from observations. Because the
observation density is non-Gaussian, the evolving state

2.2. Measurement

Observationg; are assumed to be independent, both
mutually and with respect to the dynamical process.
This is expressed probabilistically as follows:

-1 densityp(x; | Z;) is also generally non-Gaussian. The
P(Zi_1, Xt | Xie1) = pX¢ | Xi_1) l‘[ Pz |X). (2) problem now is hovv_ to apply.nlinc_aar filt_erto e\_/al—
i—1 uate the state density over time, without incurring ex-
cessive computational load. Inevitably this means ap-
Note that integrating oves; implies the mutual condi-  proximating. Numerous approaches, including “multi-
tional independence of observations: ple hypothesis tracking”, have been proposed but prove

unsuitable for use with curves as opposed to discrete
features—details are given in the appendix. In this pa-
perwe propose a sampling approach whichis described
in the following two sections.

The observation process is therefore defined by speci-
fying the conditional densityp(z | X;) at each timd,

and later, in computational examples, we take this to
be a time-independent functignz | x). Suffice it to

say for now that, in clutter, the observation density is

multi-modal. Details will be given in Section 6.

t
P2 X)) =[] p@ 1%0). €)

i=1

3. Factored Sampling

This section describes first the factored sampling algo-
rithm dealing with non-Gaussian observations in single
images. Then factored sampling is extended in the fol-
lowing section to deal with temporal image sequences.
2.3. Propagation A standard problem in statistical pattern recognition
is to find an object parameterisedxawith prior p(x),
Given a continuous-valued Markov chain with inde- using data from a single image. The posterior density
pendent observations, the conditional state-dergity  p(x | z) represents all the knowledge abaubat is de-
at timet is defined by ducible from the data. It can be evaluated, in principle,
by applying Bayes’ rule (Papoulis, 1990) to obtain
Pt(Xt) = pXt | Z1).
p(x|2) = kp(z | x) p(x) (6)
This represents all information about the state at time
that is deducible from the entire data-stream up to that wherek is a normalisation constant that is independent
time. The rule for propagation of state density over of x. In cases wherg(z|x) is sufficiently complex

time is thatp(x | z) cannot be evaluated simply in closed form,
iterative sampling techniques can be used (Geman and
PXt | Zt) = ke p(z¢ | %) pOXt | Z-1), (4) Geman, 1984; Ripley and Sutherland, 1990; Grenander

et al., 1991; Storvik, 1994). The factored sampling
where algorithm (Grenander et al., 1991) generates a random

variatex from a distributionp(x) that approximates the

pX | Zi_1) :/ POt | X_1) POt Ze1)  (5) posteriorp(x | 2). First, a sample-s¢s?, ..., sV} is
X1 generated from the prior densityx) and then an index
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Figure 3 Factored sampling: a set of poirgt®, the centres of the blobs in the figure, is sampled randomly from a prior degigity Each
sample is assigned a weighi (depicted by blob area) in proportion to the value of the observation depéityx = s™). The weighted
point-set then serves as a representation of the posterior deisity), suitable for sampling. The one-dimensional case illustrated here extends
naturally to the practical case that the density is defined over several position and shape variables.

n e {1,..., N} is chosen with probabilityr,, where
P=(s")
™= SN i
and

Pz(X) = p(Z]X),

the conditional observation density. The vakie= x,
chosen in this fashion has a distribution which approx-
imates the posterigp(x | z) increasingly accurately as
N increases (Fig. 3).

Note that posterior mean properti€gy(x) | z] can
be generated directly from the samp{g®} by weight-
ing with p,(x) to give:

Sne19(s”)pe(s™)
Zr,:lzl p(s™)

For example, the mean can be estimated ug{rp = x
(illustrated in Fig. 4) and the variance usiggx) =
xx". In the case thap(x) is a spatial Gauss-Markov
process, Gibbs sampling from(x) has been used
to generate the random variatgs?, . .., sN’}. Oth-
erwise, for low-dimensional parameterisations as in

E[gx) 7] ~

()

estimators are unusable, estimates of medny fac-
tored sampling continue to apply.

4. The CONDENSATION Algorithm

The CONDENSATION algorithm is based on factored
sampling but extended to apply iteratively to successive
images in a sequence. The same sampling strategy
has been developed elsewhere (Gordon, et al., 1993;
Kitagawa, 1996), presented as developments of Monte-
Carlo methods. Jump-diffusion tracking (Miller et al.,
1995) may also be related to the approach described
here.

Given that the process at each time-step is a self-
contained iteration of factored sampling, the out-
put of an iteration will be a weighted, time-stamped
sample-set, denotdd™, n =1, ..., N} with weights
th(n), representing approximately the conditional state-
density p(x; | Z;) at timet. How is this sample-set
obtained? Clearly, the process must begin with a prior
density and the effective prior for time-stéshould
be p(x; | Z;_1). This prior is of course multi-modal in
general and no functional representation of it is avail-
able. It is derived from the sample set representation
(", ™), n = 1,...,N} of pxi_1|Z 1), the
output from the previous time-step, to which predic-

this paper, standard, direct methods can be used fortion (5) must then be applied.

Gaussian’s (Press et al., 1988). Note that, in the case
that the densityp(z| x) is normal, the mean obtained

by factored sampling is consistent with an estimate ob-

tained more conventionally, and efficiently, from linear

The iterative process as applied to sample-sets, de-
picted in Fig. 5, mirrors the continuous diffusion pro-
cess in Fig. 2. At the top of the diagram, the out-

put from time-steg — 1 is the weighted sample-set
WG

least squares estimation. For multi-modal distributions {(s”;, 7;_;), n=1,..., N}. The aim is to maintain,
which cannot be approximated as normal, so that linear at successive time-steps, sample sets of fixed Nize
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Figure 4 Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve paramgtah sample™ is shown as a
curve (of varying position and shape) with a thickness proportional to the wejghtThe weighted mean of the sample set (b) serves as an

estimator of the distribution mean.

drift

Figure 5 One time-step in th€ ONDENSATION algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps inGloesDENSATION algorithm.
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so that the algorithm can be guaranteed to run within mations ofx. The CoNDENsATION algorithm itself

a given computational resource. The first operation does not demand necessariljreear parameterisation
therefore is to sample (with replacemekltjimes from though linearity is an attraction for another reason—the
the set{s{’l)l}, choosing a given element with probabil-  availability of algorithmsto learn objectdynamics. The
ity 7",. Some elements, especially those with high algorithm could also be used, in principle, with non-
weights, may be chosen several times, leading to iden- linear parameterised kinematics—for instance, repre-
tical copies of elements in the new set. Others with senting an articulated hand in terms of joint angles
relatively low weights may not be chosen at all. (Rehg and Kanade, 1994).

Each element chosen from the new set is now sub-
jected to the predictive steps. First, an element un- g 4
dergoes drift and, since this is deterministic, identical
elements in the new set undergo the same drift. This

is apparent in the Fig. 5. The second predictive Step, \ye represent the state of a tracked object following
diffusion, is random and identical elements now split q1hods established for tracking using a Kalman filter
becguse each und_ergoes its own mdependentBrownlahnyake et al., 1995). Objects are modelled as a curve
motion step. At this stage, the sample &t} for the  (or set of curves), typically though not necessarily the
newtime-step has been generated but, as yet'W'thOUt'tSoccluding contour, and represented at tintgy a pa-

weights; itis approximately a fair random sample from . eterised image curves, t). The parameterisation
the effective prior densityp(x; | Z;_1) for time-stept. is in terms of B-splines, so

Finally, the observation step from factored sampling is
applied, generating weights from the observation den- rs t) = (B(s) - Q*(t), B(s) - QY(t)),
sity p(z | X;) to obtain the sample-set representation
(&, 1)} of state-density for time.

Figure 6 gives a synopsis of the algorithm. Note the
use ofcumulatiV(-Jweightsc[('7)l (constructed in step 3)
to achieve efficient sampling in step 1. After any time-
step, it is possible to “report” on the current state, for
example, by evaluating some moment of the state den-
sity as shown.

One of the striking properties of thEONDENSA-
TION algorithm is its simplicity, compared with the « =
Kalman filter, despite its generality. Largely, this is <Q ) = WX + <? ) ,
due to the absence of the Riccati equation which ap- QY QY

pears in the Kalman filter for the propagation of co- o ) .
variance. The Riccati equation is relatively complex Where the matrixV is amatrix of rankNx considerably

computationally but is not required in tH@ONDEN- lower than the Rlg degrees of freedom of the uncon-
sATION algorithm which instead deals with variability ~ Strained spline. Typically the shape-space may allow
by sampling, involving the repeated computation of a affine deformations of the template shapeor more

relatively simple propagation formula. generally a space of rigid and non-rigid deformations.
The space is constructed by applying an appropriate

combination of three methods to build/-matrix:

Linear Parameterisations of Splines
for Tracking

forO<s=<L, (8

where B(s) is a vector (By(S), ..., Bny(s)"T of
B-spline basis function®* andQY are vectors of B-
spline control point coordinates andis the number

of spans. Itis usually desirable (Blake et al., 1993) to
restrict the configuration of the spline to a shape-space
of vectorsX defined by

9)

5. Stochastic Dynamical Models

for Curve Motion 1. determining analytically combinations of contours
derived from one or more views (Ullman and Basri,
In order to apply theCoNDENSATION algorithm, 1991; Koenderink and Van Doorn, 1991; Blake

which is general, to tracking curves in image-streams,  etal., 1993), a method that is usable both for affine
specific probability densities must be established both  spaces and for certain classes of articulated object;
for the dynamics of the object and for the observation 2. capturing sequences of key frames of the object in
process. In the examples described haris, a linear different poses (Blake et al., 1995);
parameterisation of the curve and allowed transforma- 3. performing principal components analysis on a set
tions of the curve are represented by linear transfor-  of outlines of the deforming object (Cootes et al.,
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Iterate
From the “old” sample-set {SET_L)I, TI'EZ)I, ci’_b)l, n=1,...,N}at time-step t—1, construc:
a “new” sample-set {sgn), ﬂt(n), c&n)}, n=1,...,N for time ¢.

Construct the nt? of N new samples as follows:
1. Select a sample s;(n) as follows:

(a) generate a random number r € [0, 1], uniformly distributed.
(b) find, by binary subdivision, the smallest j for which ¢\, > r

t—
(c) set s = sgj)l

2. Predict by sampling from

(n))

P(XefXe-1 = S't

to choose each sE"). For instance, in the case that the dynamics are governed by
a linear stochastic differential equation, the new sample value may be generated
as: sﬁ”) = As’gn) + ngn) where wﬁ") is a vector of standard normal random

variates, and BBT is the process noise covariance — see section 5.
3. Measure and weight the new position in terms of the measured features z;:

(n) _ (n))

w0 = plzelx = s

then normalise so that > ﬂt(n) = 1 and store together with cumulative probab-

(s xm) o)

ility as , T e ) where

Cio) = 03
= e (=1,

Once the N samples have been constructed: estimate, if desired, moments of the
tracked position at time-step ¢ as

obtaining, for instance, a mean position using f(x) = x.

Figure 6 The CONDENSATION algorithm.

1993; Baumberg and Hogg, 1994) to derive a small wherew; are independent vectors of independent stan-

set of representative contours. dard normal variables, the state-vector
Xi-1
5.2. Dynamical Model Xt =< X, ) (11)

Exploiting earlier work on dynamical modelling (Blake and wherex is the mean value of the state aAdB are
etal., 1993, 1995), object dynamics are modelled as amatrices representing the deterministic and stochastic
second order process, conveniently represented in dis-components of the dynamical model, respectively. The
cretetime as asecond order linear difference equation: system is a set of damped oscillators, whose modes,
natural frequencies and damping constants are deter-
Xt — X = A(X-1 — X) + Bw; (10) mined by A, driven by random accelerations coupled
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into the dynamics vi® from the noise ternBw. While is suggested. Then an extension is proposed for two-
it is possible to set sensible defaults far x and B, dimensional observations that is also used later in com-
it is more satisfactory and effective to estimate them putational experiments.

from input data taken while the object performs typical

motions. Methods for doing this via Maximum Like- 51 One-Dimensional Observations in Clutter
lihood Estimation are essential to the work described

here and are described fully elsewhere (Blake et al., |n one dimension, observations reduce to a set of
1995; Reynard et al., 1996). scalar positiondz = (z, 2, ..., zw)} and the ob-
The dynamical model can be re-expressed in such ageryation density has the form(z|x) wherex is
way as to make quite clear thatitis a temporal Markov gne-dimensional position. The multiplicity of measure-
chain: ments reflects the presence of clutter so either one of
the events
P(Xt | Xt—1)

1 ¢m = {true measurementiz,}, m=1..., M
x exp<—§|| B7H(% — %) — A(X¢—1 — >_<))||2> (12)

occurs, or else the target object is not visible with prob-
) ] ] ability @ = 1 — Y, P(¢m). Such reasoning about

where| - - - || isthe Euclidean norm. Itisthereforeclear ¢, iter and false alarms is commonly used in target
that the learned dynamical models are appropriate for tracking (Bar-Shalom and Fortmann, 1988). Now the

use in theCONDENSATION algorithm. observation density can be expressed as

M
5.3. Initial Conditions p(z| x) = gp(z] clutten + Z Pz | X, ¢m) P(¢pm).

m=1
Initial conditions for tracking can be determined by - A reasonable functional form for this can be obtained
specifying the prior densityp(Xo), and if this is  p aing some specific assumptions: et @m) =
Gaussian, direct sampllng can be u;ed to .|n_|t|aI|se the p, Vm, thatthe clutter is a Poisson process along the line
CONDENSATION algorithm. Alternatively, it is pos- with spatial density. and that any true target measure-

sible simply to allow the densitp(x;) to settle to @ ot is ynbiased and normally distributed with stan-
steady stat@(X), in the absence of object measure- dard deviatiors . This leads to

ments. Provided the learned dynamics are stable (free L )

of undamped oscillations) a unique steady state exists. _ Vm

Furthermore, ifp(Xo) is Gaussianp(X..) is Gaussian P(z[x) oc1+ 2o zm:e p( 202> (13)

with parameters that can be computed by iterating the o

Riccati equation (Gelb, 1974). Atthis pointthe density Wheree = g andvm = zm — X, and is illustrated
function represents an envelope of possible configura- " Fig. 7. Peaks in the density functlon correspond to
tions of the object, as learned during the training phase. measured features and the state density will tend to be

(Background clutter, if present, will modify and bias reinforced in theConpENsATION algorithm at such
this envelope to some extent.) Then, as soon as thePoints. The background level reflects the possibility

foreground object arrives and is measured, the density 1t the true target has not been detected at all. The
p(x,) begins to evolve appropriately. effect on tracking behaviour is to provide for the possi-

bility of “tunneling”: a good hypothesis should survive
a transitory failure of observations due, for example,

6. Observation Model to occlusion of the tracked object. The parameters
(units of distance) and (units of inverse distance)
The observation process defined byz | x;) is as- must be chosen, though, in principle, they could be

sumed here to be stationary in time (though the estimated from data by observing measurement error
CONDENSATION algorithm does not necessarily de- o and both the density of cluttérand probability of
mand this) so a static functiop(z|x) needs to be  non-detectiomy.

specified. As yet we have no capability to estimate  Considerable economy can be applied, in practice, in
it from data, though that would be ideal, so some the evaluation of the observation density. Given a hy-
reasonable assumptions must be made. First, a meajpothesised positior in the “observation” step (Fig. 6)
surement model for one-dimensional data with clutter it is not necessary to attend to all featuegs. . ., zy.
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Figure 7. One-dimensional observation model: a probabilistic observation model allowing for clutter and the possibility of missing the target
altogether is specified here as a conditional densiy x).

Any vy, for which 6.2. Two-Dimensional Observations
2
1 exp <_”_m) <1 In a two-dimensional image, the set of observatipns
V2roa 2 is, in principle, the entire set of features visible in the

can be neglected and this sets a search window around™age. However, an important aspect of earlier sys-
the positionx outside which measurements can be ig- €MS in achieving real-time performance (Lowe, 1992;

nored. For practical values of the constants the searcharris, 1992; Blake etal., 1993) has been the restriction
window will have a width of a fews. In practice, the of measurement to a sparse set of lines normal to the

clutter is sufficiently sparse andis sufficiently small tracked curve. These two apparently conflicting ideas
that the search window rarely contains more than one ¢an be resolved as follows. , _ _
feature. The observation densitg(z | X) in two dimensions

Note that the densitp(z | x) represents the informa- Qescribes the distripution ofa (Iinequy) paramgterised
tion aboutx given a fixed numbel of measurements. ~ IMage curvez(s), given a hypothetical shape in the
Potentially, theeventyry that there areM measure-  [orm of a curver(s), 0 < s < 1, represented by a
ments, regardless of the actualuesof those measure- ~ Shape parameter. The two-dimensional density be

ments, also constitutes information abautHowever, derived as an extension of the one-dimensional case. It
we can reasonably assume here that is assumed that a mappig¢p) is known that associates
each poink(s) on the image curve with a poinfg(s))
P(m | X) = P(W¥m), on the shape. In practice, this mapping is set up by

tracing normals from the curve Note thatg(s) is not
necessarily injective becauges) includes clutter as
well as foreground features. Next, the one-dimensional

pX | Ym) = density (13) is approximated in a more amenable form

M p(x) .
that neglects the possibility of more than one feature

—the eventy provides no additional informa- lying inside the search interval:
tion about the positiox. (If x is allowed also to fall
outside the image window then the evenyj is infor- 1
mative: a value oM well above the mean value for Pz[X) eW(‘ﬁ CE M))
the background clutter enhances the probability xhat
lies within the window.) where f (; 1) = min0?, 41?),  (14)

for instance becauseis assumed to lie always within
the image window. In that case, by Bayes’ theorem,
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Figure 8 Observation process: the thick line is a hypothesised shape, represented as a parametric spline curve. The spines are curve normals

along which high-contrast features (white crosses) are sought.

n = /20 log(1/+/2na0) is a spatial scale constant,

The observation density (15) can be computed via a

andv, is thevy, with smallest magnitude, representing discrete approximation, the simplest being:

the feature lying closest to the hypothesised position
A natural extension to two dimensions is then

1 L
p<z|x>=Zexp(—E /0 f(Zl(S)—r(S);M)dS>
(15)

inwhichr is a variance constant amg(s) is the closest
associated feature t@s):

z1(s) = z(s) wheres = argsleglilrgs) Ir(s) — z(s)]|.

Note that the constant of proportionality (“partition
function”) Z(x) is an unknown function. We make the
assumption that the variation dfwith x is slow com-
pared with the othertermin (15) so thatan be treated

Mo1
pEix)occexpl =) —f(ziu(sn) —r(smiw |,
(n;ZM ! )
(16)

wheres, = m/M. This is simply the product of
one-dimensional densities (14) with= +/r M, eval-

uated independently alonlyl curve normals as in

Fig. 8.

7. Applying the CONDENSATION Algorithm
to Video-Streams

Four examples are shown here of the practical efficacy
of the CONDENSATION algorithm. Movie (MPEG)

as constant. It remains to establish whether this as- versions of some results are available on the web at

sumption is justified.

http://www.robots.ox.ac.uk/ ~ab/ .
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Figure 9 Tracking three people in a cluttered room: the first frame of a sequence in which one figure moves from right to left in front of two
stationary figures.

7.1. Tracking a Multi-Modal Distribution background clutter is now visible to the tracker.
Figure 10 shows how the state-density evolves as track-
The ability of theCoNDENSATION algorithm to rep- ing progresses. Initialisation is performed simply by

resent multi-modal distributions was tested using a 70 iterating the stochastic model, in the absence of mea-
frame (2.8 s) sequence of a cluttered room containing surements, to its steady state and it can be seen that this
three people each facing the camera (Fig. 9). One of corresponds, at time 0, to a roughly Gaussian distribu-
the people moves from right to left, in front of the other tion, as expected. The distribution rapidly collapses
two. The shape-space for tracking is built from a hand- down to three peaks which are then maintained appro-
drawn template of head and shoulders (Fig. 8) which priately even during temporary occlusion. Although the
is then allowed to deform via planar affine transforma- tracker was designed to track just one personCths-
tions. A Kalman filter contour-tracker (Blake et al., DENsATION algorithm allows the tracking of all three,
1993) with default motion parameters is able to track for free; the ability to represent multi-modal distribu-
a single moving person just well enough to obtain a tions effectively provides multiple hypothesis capabil-
sequence of outline curves that is usable as training ity. Tracking is based on frame rate (40 ms) sampling
data. Given the high level of clutter, adequate perfor- in this experiment and distributions are plotted in the
mance with the Kalman filter is obtained here by means figure for alternate frames. The experiment was run
of background modelling (Rowe and Blake, 1996), a using a distribution ofN = 1000 samples per time-
statistical form of background subtraction, which ef- step.

fectively removes clutter from the image data before it

is tracked. It transpires, for this particular training set, 7.2. Tracking Rapid Motions Through Clutter

that the learned motions comprise primarily horizontal

translation, with vertical translation and horizontal and The ability to track more agile motion, still against

vertical shear present to a lesser degree. clutter, was tested using a 500 field (10 s) sequence
The learned shape and motion model can now of a girl dancing vigorously to a Scottish reel. The

be installed asp(x; |X;_1) in the CONDENSATION shape-space for tracking was planar affine, based on a

algorithm which is run on a test sequence taith- hand-drawn template curve for the head outline. The

out the benefit of background modelling, so that the training sequence consisted of dancing against alargely
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Figure 10 Tracking with multi-modal state-density: an approximate depiction of the state-density is shown, computed by smoothing the
distribution of point masse#l), s{z), ...inthe CONDENSATION algorithm. The density is, of course, multi-dimensional; its projection onto the
horizontal translation axis is shown here. The initial distribution is roughly Gaussian but this rapidly evolves to acquire peaks corresponding to
each of the three people in the scene. The right-most peak drifts leftwards, following the moving person, coalescing with and separating from

the other two peaks as it moves. Having specified a tracker for one person we effectively have, for free, a multi-person tracker, owing to the
innate ability of theCONDENSATION algorithm to maintain multiple hypotheses.

uncluttered background, tracked by a Kalman filter expected given the range of the dance. Such a broad
contour-tracker with default dynamics to record 140 distribution cannot effectively be represented by just
fields (2.8 s) of tracked head positions, the most that N = 100 samples. One alternative is to increbsim
could be tracked before losing lock. Those 140 fields the early stages of tracking, and this is done in a later
were sufficientto learn a bootstrap motion model which experiment. Alternatively, the prior can be based on
then allowed the Kalman filter to track the training data a narrower distribution whose centre is positioned by
for 800 fields (16 s) before loss of lock. The motion hand over the objectattime 0, and thatis whatwas done
model obtained from these 800 fields was used in exper- here. Observation parameters were= 24, o = 7
iments with theCoNDENSATION tracker and applied  with M = 18 normals.
to the test data, now including clutter. Figure 12 shows the mation of the centroid of the
Figure 11 shows some stills from the test sequence, estimated head position as tracked both bytuex-
with a trail of preceding head positions to indicate mo- DENsATION algorithm and by a Kalman filter using
tion. The motion is primarily translation, with some the same motion model. THREONDENSATION tracker
horizontal shear apparent as the dancer turns her headcorrectly estimated head position throughout the se-
Representing the state density with= 100 samples  quence, but after about 40 fields (0.80s), the Kalman
at each time-step proves just sufficient for successful filter was distracted by clutter, never to recover.
tracking. As in the previous example, a prior density ~ Given that there is only one moving person in this
can be computed as the steady state of the motion modelexperiment, unlike the previous one in which there
and, in this case, that yields a prior for position that were three, it might seem that a unimodal repre-
spreads across most of the image area, as might besentation of the state density should suffice. This is
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field 221 (4420 ms) field 265 (5300 ms)

Figure 11 Tracking agile motion in clutter: the test sequence consists of 500 fields (10 s) of agile dance against a cluttered background. The
dancer’s head is tracked through the sequence. Several representative fields are shown here, each with a trail of successive mean tracked head
position at intervals of 40 ms. THEONDENSATION algorithm used\N = 100 sample per time-step to obtain these results.

emphatically not the case. The facility to represent 7.3. Tracking an Articulated Object

multiple modes is crucial to robustness as Fig. 13 illus-

trates. The figure shows how the distribution becomes The preceding sequences show motion taking place in
misaligned (at 900 ms), reacting to the distracting form affine shape-spaces of just six dimensions. High di-
of the computer screen. After a further 20 ms the distri- mensionality is one of the factors, in addition to agility
bution splits into two distinct peaks, one correspond- and clutter, that makes tracking hard (Blake et al.,
ing to clutter (the screen) and the other to the dancer’s 1993). In order to investigate tracking performance
head. At this point the clutter peak actually has the in higher dimensions, we used a 500 field (10 s) test
higher posterior probability—a unimodal tracker, for sequence of a hand translating, rotating, and flexing
instance, a Kalman filter, would almost certainly dis- its fingers independently, over a highly cluttered desk
card the lower peak, rendering it unable to recover. scene (Fig. 14). Figure 15 shows just how severe the
TheCoNDENSATION algorithm however, capable asit  clutter problem is—the hand is immersed in a dense
is of carrying several hypotheses simultaneously, doesfield of edges.

recover rapidly as the clutter peak decays for lack of A model of shape and motion model was learned
confirmatory observation, leaving just one peak corre- from training sequences of hand motion against a plain
sponding to the dancer at 960 ms. background, tracked by Kalman filter (using signed
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Time=10s

Time=10s

Condensation tracker Kalman filter tracker

Figure 12 The Condensation tracker succeeds where a Kalman filter fails: the estimated centroid for the sequence shown in Fig. 11 is plotted
against time for the entire 500 field sequence, as tracked first b thepENsSATION tracker, then by a comparable Kalman filter tracker.

The CoNDENSATION algorithm correctly estimates the head position throughout the sequence. The Kalman filter tracks briefly, but is soon
distracted by clutter and never recovers.

edges to help to disambiguate finger boundaries). The
procedure comprised several stages, creative assembly
of methods from the available “toolkit” for learning 4.
(Blake et al., 1995).

1.

accounted both for the flexing of fingers and thumb
and also for rotations of the palm.

Bootstrapping: a Kalman filter with default dy-
namics in the 12-dimensional shape-space was suf-
ficient to track a training sequence of 800 fields of
the hand translating, rotating, and flexing fingers
and thumb slowly. This was used to learn a model of

Shape-spacewvas constructed from six templates
drawn around the hand with the palm in a fixed

orientation and with the fingers and thumb in var-

ious configurations. The six templates combined 5.

linearly to form a five-dimensional space of defor-
mations which were then added to the space of trans-
lations to form a seven-dimensional shape-space.

. Default dynamicsin the shape-space above were

adequate to track a clutter-free training sequence of

motion.

Relearning: that motion model was installed in a
Kalman filter used to track another, faster training-
sequence of 800 fields. This allowed a model for
more agile motion to be learned, which was then
used in experiments with th€ ONDENSATION
tracker.

. Principal components analysis: the sequence of

600 frames in which the palm of the hand main-
tained an approximately fixed attitude. Figure 16 shows detail of a series of images from a
tracked, 500 field test-sequence. The initial state den-
600 hand outlines was replicated with each hand sity was simply the steady state of the motion model,
contour rotated through 9@nd the sequences con- obtained by allowing the filter to iterate in the absence
catenated to give a sequence of 1200 deformations. of observations. Tracker initialisation was facilitated
Projecting out the translational component of mo- by using more samples per time-stdp & 1500) at
tion, the application of Principal Component Anal- timet = O, falling gradually to 500 over the first
ysis (PCA) to the sequence of residual deformations 4 fields. The rest of the sequence was tracked using
of the 1200 contours established a 10-dimensional N = 500. As with the previous example of the dancer,
space that accounted almost entirely for deforma- clutter can distract the tracker but the ability to repre-
tion. This was then combined with the translational sent multi-modal state density means that tracking can
space to form a 12-dimensional shape-space thatrecover.
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field 46 {920 ms)

field 47 (940 ms) field 48 (960 ms)

Figure 13 Recovering from tracking failure: detail from four consecutive fields of the sequence illustrated in Fig. 11. Each sample from the
distribution is plotted on the image, with intensity scaled to indicate its posterior probability. (Most bf thel00 samples have too low a
probability to be visible in this display.) In field 45, the distribution is misaligned, and has begun to diverge. In fields 46 and 47 it has split into
two distinct peaks, the larger attracted to background clutter, but converges back onto the dancer in field 48.

7.4. Tracking a Camouflaged Object showed a bush blowing in the wind, the task being

to track one particular leaf. A template was drawn
Finally, we tested the ability of the algorithm to track by hand around a still of one chosen leaf and allowed
rapid motion against background distraction in the to undergo affine deformations during tracking. Given
extreme case that background objects actually mim- that a clutter-free training sequence was not available,
iced the tracked object. A 12 s (600 field) sequence the motion model was again learned by means of a
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Figure 14 A hand moving over a cluttered desk: Field 0 of a 500 field (10 s) sequence in which the hand translates, rotates, and the fingers
and thumb flex independently.
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Figure 15 Severe clutter: detail of one field (Fig. 14) from the test-sequence shows the high level of potential ambiguity. Output from a
directional Gaussian edge detector shows that there are many clutter edges present as potential distractors.

bootstrap procedure. A tracker with default dynamics model was sufficient to track accurately the entire 12-
proved capable of tracking the first 150 fields of a train- second training sequence. Despite occasional violent
ing sequence before losing the leaf, and those trackedgusts of wind and temporary obscuration by another
positions allowed a first approximation to the model leaf, theCONDENSATION algorithm successfully fol-

to be learned. Installing that in @ONDENSATION lowed the object, as Fig. 17 shows. In fact, tracking
tracker, the entire sequence could be tracked, thoughis accurate enough using = 1200 samples to sepa-
with occasional misalignments. Finally, athird learned rate the foreground leaf from the background reliably,
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Figure 16 Tracking a flexing hand across a cluttered desk: representative stills from a 500 field (10 s) sequence show a hand moving over a
highly cluttered desk scene. The fingers and thumb flex independently, and the hand translates and rotate<’ dtaresaTioN algorithm
usesN = 1500 samples per time-step initially, dropping gradually over 4 field$ te 500 for the tracking of the remainder of the sequence.

The mean configuration of the contour is displayed.

1.46= 2.i6s

5.046 7308

Figure 17. Tracking with camouflage: the aim is to track a single camouflaged moving leaf in this 12-s sequence of a bush blowing in the wind.
Despite the heavy clutter of distractors which actually mimic the foreground object, and occasional violent gusts of wind, the chosen foreground
leaf is successfully tracked throughout the sequence. Representative stills depict mean contour configurations, with preceding tracked leaf

positions plotted at 40 ms intervals to indicate motion.
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an effect which can otherwise only be achieved using those densities. When the density is approximately
“blue-screening”. Having obtained the model itera- unimodal, first and second moments may be adequate
tively as above, independent test sequences could beto convey the likely states, but in the multi-modal case,
tracked without further training. WitN = 1200 sam- as for example when several people are tracked simul-
ples per time-step the tracker runs at 6.5 Hz on a SGI taneously, the mean configuration is not a particularly
Indy SC4400 200 MHz workstation. Reducing this to useful statistic—it meaninglessly combines the config-
N = 200 increases processing speed to video frame- urations of the three people. An alternative is to attempt
rate (25Hz), at the cost of occasional misalignments to develop a mode finder capable of pin-pointing sev-
in the mean configuration of the contour. Observation eral modes when present. More generally, there is a
parameters werg = 8, o = 3with M = 21 normals. need for “operators” to interrogate densities: for in-
stance, an operator to find a person moving to the
) right, or to find the tallest person. Perhaps such op-
8. Conclusions erators could be formulated as hypothesis tests applied
o ) ~ to sample sets.
Tracking in clutter is hard because of the essential A third question concerns the random sampling
multi-modality of the conditional observation den- gcheme and its efficiency. Factored sampling can be
sity p(z|x). In the case of curves multiple-hypothesis jnefficient as the modes ab(z|x) become narrow.
tracking is inapplicable an_d anew app_roach is needed. ope approach is “importance sampling” (Ripley, 1987)
The CONDENSATION algorithm is a fusion of the sta- i which a heuristically chosen distribution, approxi-
tistical factored sampling algorithm for static, non- mating p(z| x), is used to concentrate random sam-
Gaussian problems with a stochastic model for object pling around modes. However, this has the drawback
motion. The result is an algorithm for tracking rigid  {hat the prior p(x) must be repeatedly evaluated

and non-rigid motion which has been demonstrated to whereas, in temporal propagation, the prior (predic-
be far more effective in clutter than comparable Kalman tion) p(x; | z_1) cannot be evaluated pointwise, only

filters. Performance of the ONDENSATION algorithm sampled.

improves as the sample size parametemcreases; Finally, it is striking that the density propagation
formally computational complexity i©(N log N), al- equation (4) in theCONDENSATION algorithm is a
though this can be madd(N) with a minor modifi-  continuous form of the propagation rule of the “for-

cation to the sampling procedure. Impressive results \yard algorithm” for Hidden Markov Models (HMMs)
have been demonstrated for models with between 6 (Rabiner and Bing-Hwang, 1993). The integral over

and 12 degrees of freedom, even whenis as low  continyous states in (5) becomes a summation over
as 100—200. Perfo_rmanc_e in several cases was iM-giscrete states in the HMM, Witlp(X; | X;_1) repre-
proved still further with an increased valde~ 1000. gented by a transition matrix. This suggests a natu-
In a six-dimensional shape-space, the system currently 5| opportunity to combine the two so that mixed dis-
runs withN = 100 in real-time (50 Hz) on a desk-top  ¢rete/continuous states could be propagated over time.
graphics workstation (SGI Indy R4400SC, 200 MH2). Thjs would allow switching between multiple mod-

~The new approach raises a number of questions. g5 for instance, walk-trot-canter-gallop, each model
First, alternative observation models could be explored represented by a stochastic differential equation, with
in order to make greater use of image intensity varia- tansitions governed by a discrete conditional proba-
tions, though without sacrificing too much in the way ity matrix. It seems likely that such a system could
of photometric invariance. It is to be hoped in the in- o executed as @oNDENSATION tracker. A further

terests of efficiency that, as happens with the search cpajienge is to develop a learning algorithm for mixed
window in the edge-based case, computational atten'dynamical models.

tion could be concentrated in a band around the hy-

pothesised curve without significant loss of accuracy

in the model. Such a model would have echoes of cor- Appendix A: Non-Linear Filtering

relation matching but of course without the exhaustive

search characteristic of correlation matchers which is There are four distinct probability distributions rep-

quite infeasible in more than two or three dimensions. resented in a non-linear Bayesian filter. Three of
Secondly, the availability of general state densities them form part of the problem specification and the

suggests the need for more general representations ofourth constitutes the solution. The three specified
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distributions are: evolving state-density which may be a good approx-
imation depending on the nature of the non-linearity.
1. the prior densityp(x) for the statex Thisis the basis of the “Extended Kalman Filter” (EKF)
2. the process densitg(x; | X;_1) that describes the (Gelb, 1974; Bar-Shalom and Fortmann, 1988). Al-
stochastic dynamics ternatively, one can attempt a mixture representation,
3. the observation density(z | X) as earlier, but now allowing the weights™ also to

vary over time. Unfortunately, even allowing dynamic

and the filter evolves over time to generate, as the so- re-weighting (Sorenson and Alspach, 1971) does not
lution at each time-step, the state-dengityx) where produce exact solutions fop,(x), because the indi-
pt(X) = pX | Z1). Only when all of the three spec-  vidual Gaussian components do not remain Gaussian
ified distributions are Gaussian is the state-dengjty ~ over time. For example, consider the case in which the
also Gaussian. Otherwise, for non-Gausspgnit is process densityp(x; | X;_1) is itself an additive mix-
possible to use one of a number of approximate filters, ture ofk > 1 Gaussian components. According to the
depending on which of the specified densities it is that Bayesian propagation equation (5) each component of
is non-Gaussian. p: splits intok separate components in the transition
from timen to timen + 1; the total number of compo-
nents inp; grows exponentially a'. Clearly, p; must
be approximated at each time-step to prune back the
number of components (Anderson and Moore, 1979)
within some resource-limited bourd. Effectively,
there areMk full Kalman filters running at each time-
step, each bringing the computational expense of its
own Riccati equation step. Clearly, the success of this

M approach depends on how well the densitgsand
Po(X) = Z w™G(x; 1™, Pgm)), p(X | X;_1) can be approximated with a modest num-

m=1 ber Mk of components.

A.1. Non-Gaussian Prior Density

The case that the prior density is non-Gaussian is the
simplest to deal with provided only that it can ade-
guately be represented (or approximated) as an additive
Gaussian mixture:

In that case, provided that other specified densities are
Gaussian, the state density can also be represented a8.3. Non-Gaussian Observation Density
a corresponding mixture
In the case of visual tracking in clutter, non-linearity

M . . B
of the tracking filter arises, as we have seen, because
— (m) . M (M) . . T !
o0 =D w™G(x ™ A™) the observation densitp(z|x) is non-Gaussian and,
m=1 furthermore, is multi-modal so that it cannot be well
(m) (m) approximated by a single Gaussian. Each of the meth-

in which the mean and variance®, "~ vary over . . . .
Pt ! y ods just mentioned for handling non-Gaussian process

time but the weights)™ are fixed. Each of th1 mix- . ) )
. ._ density, the EKF and Gaussian mixtures, are relevant
ture components evolves as an independent Gaussian

. L ... also to non-Gaussian observation density but continue
sothat, in fact, the state density is just a sum of densities :

: . : to have the same drawbacks. Note that, in the case of
from M independent linear Kalman filters.

Gaussian mixtures, the number of mixture components
again proliferates at each time-step of (4), albeit via a
A.2. Non-Gaussian Process Density different mechanism involving products of Gaussians
rather than convolutions. Even this assumes that the
Non-Gaussian state densities can arise from the natureobservation density can be approximated as a mixture
of the process either because the dynamics are drivenbut in clutter this becomes rather inefficient, requiring
by non-Gaussian process noise, or, more generally, be-at least one component per visible feature.
cause the deterministic dynamics are non-linear. One There is an additional class of techniques which ap-
approach to filtering is then to approximate the dynam- plies to this case when the non-Gaussian state den-
ics by Taylor expansion as a linear process with time- sity arises from clutter of a particular sort. In the
varying coefficients and proceed as for linear Kalman simplest case, one of a finite set of measurements
filters. This generates a Gaussian representation of thez; = {z 1, ..., z «} at timen is to be associated with
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the statex; at timet. Heuristic mechanisms such asthe Proof:
validation gate and the probabilistic data-association

filter (PDAF) (Bar-Shalom and Fortmann, 1988) at- P2t | X&) = p(zi, Zi-1| &)

tempt to deal with the ambiguity of association. Al- = Pz | Zie1, X P(Zior | X))
ternatively it can, in principle, be dealt with exactly by —1
“multiple hypothesis filtering” but with computational =Pz | 21, X) ]‘[ Pz | X))
cost that grows exponentially over time and which ie1

is therefore ruled out in practice. The “RANSAC”

algorithm (Fischler and Bolles, 1981) deals proba- (Taking (3) at time and integrating w.r.tz; yields the
bilistically with multiple observations but the obser- reduction of the second term in line 2.) Now, using (3)
vations have to be discrete, and there is no mecha-29ain gives the result.

nism for temporal propagation. More complex methods

including the Joint PDAF (JPDAF) (Bar-Shalom and Lemma 2.

Fortmann, 1988; Rao, 1992) address the more dif-

ficult problem of associating not simply single fea- POt | A1, Z-1) = P(Xe [ Xi-1).

tures but subsequences®f with the state. However,
these methods rely on the existence of discrete fea-
tures. In contour tracking the features are continuous
curves and so are not naturally amenable to discrete
association.

Proof:
PXt, Zi—1] A1) = P(X¢ | X—1) P(Zi—1 | Xi—1)
from (2) so

A4. Direct Integration Pt | Zt-1, Xi—1) = P(Xt | At-1) = P(Xt | Xe-1),
using the Markov assumption (1).

Finally, one very general approach to non-linear filter- For derivation of the propagation formula consider

ing must be mentioned. This is simply to integrate (5)

directly, using_ a suitable_n_umerical repres_en_tation of Pz | Xy Z1) P | Zion)
the state density such as finite elements. Thisinessence p(X; | 2) =

is what (Bucy, 1969) proposed and more recently P | Zt-1)

(Hager, 1990) investigated with respect to robotics ap- = kp@ | 4, Z-) P(X | Zi-1)
plications. It is usable in one or two dimensions but, = kip(z | X0) p(&t | Z1-1)

complexity being exponential in the dimension, is al- (using Lemma L
together infeasible for problems of dimension around
6—20, typical of the tracking problems dealt with here.
The CONDENSATION algorithm is designed to offer a
viable alternative.

Now integrating w.r.t.X;_; gives

PXt | Zt) = kep(ze | X) PX¢ | Zt-1).

Appendix B: Derivation of the Sampling Rule The last term can be expanded:

The correctness of the sampling rule (4) in Section 2.3 _

is proved by first deriving two lemmas from the inde- Pt | Zi-1)= s P | X1, Ze-1) P(de1 | Zia)

pendence assumption (2). (This is similar to the deriva-

tion found in (Bar-Shalom and Fortmann, 1988), ex- =/ P(Xt [ Xt—1) P(Xi-1 | Zt-1)

cept that our independence assumptions are explicitly X1V X2 ,

specified.) (using Lemma 2
2/ Pt [ Xt-1) P(Xt-1 | Zt-1)

Lemma 1. Xt

Pzt | X, Zi-1) = P(zt | Xo)- which is the required result.
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Appendix C: Asymptotic Correctness C.2. Dynamic Extension of Factored Sampling

of the CONDENSATION Algorithm
The first step in the extension for dynamic problems is

The CONDENSATION algorithm is validated here by a  to state a corollary of the theorem above that generalises

probabilistic argument showing thatthe sample-setrep- it slightly to the case where the prior is not known

resentation of conditional density is correct, asymptot- exactly but has itself been simulated approximately.

ically, as the sizeN of the sample set at each time-step

getslarge. The argumentis based onthe one by GrenanCorollary 4 (Weak factored sampling). The se-

der et al. (1991) to justify their factored sampling al- quencesy, ..., sy is now generated by sampling from

gorithm for interpretation of static images. They use a density p chosen such that

the standard probabilistic tool of “weak convergence”

(Rao, 1973) and the “weak law of large numbers” to ps(X) = po(x), weakly, asN — oo,

show that a posterior distribution inferred by factored

sampling can be made arbitrarily accurate by choosing Where convergence is uniform with respecktoPro-

N sufficiently large. No formal indication is given as  Vvided p is boundedthe random variate’ generated

to how largeN should be for a given level of accu-  from thes, as before has a density functig@rfor which

racy, something which is determined, in practice, by

experimentation. P(X) — apo(X) pz(X), weakly, asN — oo

In the proof that follows, the correctness proof for ) ) )

factored sampling of a static image is made inductive @nd convergence is uniform with respeckto

so that it can be applied to successive images in a se- . ) )

guence. This would be sufficient to apply several inde- The proof of this corollary is straightforward.

pendent images to the estimation of a static underlying

object. A further generalisation takes account of the ¢.3. Propagation of Approximated State Density

predictive step (step 2 of thEONDENSATION algo-

rlthm) that deals with the dynamiCS of an Object in First note that the Samp|e$n) generated by the al-

motion. gorithm can themselves be regarded as random vari-
ables. Using the corollary it is possible to estab-

_ lish that asymptotically the probability density of any

C.1. Factored Sampling givens™ converges to the desired probability density
p(Xt | Zt_1). From now on the limit symbob> is used

The asymptotic correctness of the factored sampling g genote weak, uniform convergence of density func-

algorithm (Section 3) is expressed in a theorem of {jons asN — co. The correctness result is expressed

Grenander et al. (1991): in the theorem below. We first require a normalisation
assumption for the process density, that

Theorem 3 (Factored sampling). If apop; is an

(absolutely continuoysdensity function(with o a / P(X¢ | Xt—1) dX;_1 is bounded' a7
suitable normalisation constanthen for any given
valuex Theorem 5 (Weak propagation). Each sample
s}“), n=1...,N attimet is drawn from a distri-
B(X) = apo(X) p.(X), weakly, asN — oo bution with densityp; such that

D (X Xt | Zi-1).
—weak convergence of the density function to the re- P = PO ] Ze-0)

quired posterior. Proof: The proof is inductive. Suppose the result
holds for p;_1; then after step 1 of the algorithm in

(Recall p is the density function of the random vari-  Fig. 6, by the corollary, and observing that the sampling

ate x generated by factored sampling, as defined in probabilities are

Section 3.) The proof of the theorem was given by . ™

Grenander et al. T X P(Zt—l | Xt—1 = 3,1),
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eachst(rl)l has a density]_, such that Zisserman, and for experimental assistance from Sarah
Blake.
Pi_g —> ar—1P(Xe—1 | Z1-2) P(Zt—1 | X¢—1)

. o Notes
wherea;_1 is a normalisation constant so that

1. This paper has appeared in short form (Isard and Blake, 1996) as

Pi_y — PXt—1| Zt-1). jointwinner of the prize of the European Conference on Computer
Vision, 1996.
In step 2 of the algorithm the random dynamical step 2. Note: The presence of clutter cauggs | x) to be non-Gaussian,
(n)

with densityp” such that but the priorp(x) may still happily be Gaussian, and that is what
will be assumed in our experiments.
3. There could be some benefit in allowing thépn) to vary with
p’(x) = / p(xt | Xt—1 = S’En)) p(s’t(n)) ds’tm) mto reflect varying degrees of feature-affinity, based on contrast,
colour or orientation.

is applied tos" to gives

, 4. Thisassumption is notrestrictive in practice butis alittle inelegant
= [ POt | Xt—1) P'(Xt-1) dXt—1 and perhaps there is a way to do without it.

- / P(Xt | Xi—1) P(Xt—1 | Zi—1) AX¢—1
(making use 0f17))
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