
COSINE AND GAUSSIAN TRANSFORMS

CARLOS LIZAMA AND ROLANDO REBOLLEDO

Abstract. This paper introduces and investigates probabilistic properties

of a class of gaussian processes connected with cosine transforms, which have
been used to describe non Markovian classical open systems in Physics. Sev-

eral examples of these processes are considered, namely, the Fractional Brow-
nian Motion with Hurst coefficient > 1/2 and other processes appearing in

viscoelasticity models.

1. Introduction

This paper concerns the construction of Gaussian non Markovian processes
obtained from integration with respect to a Brownian motion on the “frequency
domain”. These processes are motivated by the non Markovian approach to Open
System Dynamics.

Indeed, consider first a classical mechanical system which can be observed and
will be referred as the main system. This system is immersed in a reservoir or heat
bath composed of a great number of harmonic oscillators which collide with the
main system, where the frequencies vary over the positive real line. To describe the
action of the reservoir on the main system one supposes first that the interaction
is produced at discrete frequencies jh, where j ∈ N and h > 0. Variations on the
momentum of the main system are described by a memory kernel and a random
force. The latter depends on the variation of initial conditions of each harmonic
oscillator. This is the setup used in a number of recent papers in Physics (see eg.
[5]).

This paper is aimed at investigating probabilistic properties of non Markovian
gaussian processes generated by the above approach to open system dynamics.
Moreover, we enlarge the class of such processes by tracing a parallel with the
theory of cosine transform. Cosine transforms appear naturally when considering
classical heat bath made of an infinite number of harmonic oscillators.

In the next section we start studying positive cosine transforms, to follow in
section 3 with the definition of a gaussian transform. In section 4, these gaussian
transforms are represented as stochastic integrals. The case of discrete gaussian
transforms and their limits are considered in section 5. We end the paper by
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providing a number of examples. Applications to open systems in Physics will be
considered in a separate paper.

2. Positive cosine transforms

Let v ∈ L1(R+) be a continuous positive convex function, therefore its second
derivative in distribution’s sense is positive.
Define

R(t) =

∫ t

0

(t− u)v(u)du, (2.1)

for all t ≥ 0. Note that R(t) is a positive function. We begin with the following
result.

Proposition 2.1. The function

K(t, s) = R(t) +R(s)−R(t− s), (2.2)

is positive definite.

Proof. Since v is convex, the function

2

π

∫ ∞
0

v(t) cos(xt)dt, (2.3)

is positive as proved in [8]. Therefore, define

f(x) =

√
2

π

∫ ∞
0

v(t) cos(xt)dt, (2.4)

for all x ≥ 0. This is a function in L2(R+). Moreover, v(t) is the cosine transform
of the function f2, that is

v(t) =

∫ ∞
0

f2(x) cos(xt)dx.

As a result, R can be written

R(t) =

∫ ∞
0

(
f(x)

x

)2

(1− cos(xt))dt.

Therefore, K can be written as

K(s, t) =

∫ ∞
0

(
f(x)

x

)2

[(1− cos(xt))(1− cos(xs)) + sin(xt) sin(xs)] dx. (2.5)

Now, take any finite set I of positive numbers and z(t) ∈ C, t ∈ I, then∑
s,t∈I

z(t)z(s)K(s, t) =

∫ ∞
0

(
f(x)

x

)2
∣∣∣∣∣∑
t∈I

z(t)(1− cos(xt))

∣∣∣∣∣
2

dx

+

∫ ∞
0

(
f(x)

x

)2
∣∣∣∣∣∑
t∈I

z(t) sin(xt)

∣∣∣∣∣
2

dx

≥ 0.

�
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Remark 2.2. Notice that K is decomposed as a sum of two positive definite kernels
K = K1 +K2, where

K1(s, t) =

∫ ∞
0

(
f(x)

x

)2

(1− cos(xt))(1− cos(xs))dx (2.6)

K2(s, t) =

∫ ∞
0

(
f(x)

x

)2

sin(xt) sin(xs)dx. (2.7)

To each positive definite function one can associate a Hilbert space and a scalar
product. We recall briefly the construction of a self-reproducing Hilbert space
h(K) associated to a positive definite kernel K due to Aroszajn (see for instance
[6]).

Consider the space V(K) of all finite linear combinations
∑
s∈R a(s)K(s, ·),

where a : R → C is a function with finite support. Define,

〈g, h〉 =
∑
s,t

a(s)b(t)K(s, t), (2.8)

where g =
∑
s a(s)K(s, ·) and h =

∑
t b(t)K(t, ·), a and b with finite support. So

that,

〈g,K(t, ·)〉 = g(t), (t ∈ R).

Thus, in particular, 〈K(s, ·),K(t, ·)〉 = K(s, t), s, t ∈ R+. The space h(K) is
then the completion of V(K) for the scalar product (2.8).

Notice that, 〈K1(s, ·),K(t, ·)〉 = K1(s, t) = 〈K1(s, ·),K1(t, ·)〉. Therefore,

〈K1(s, ·),K2(t, ·)〉 = 〈K1(s, ·),K(t, ·)−K1(t, ·)〉
= 〈K1(s, ·),K(t, ·)〉 − 〈K1(s, ·),K1(t, ·)〉
= K1(s, t)−K1(s, t)

= 0.

As a result we have the following easy consequence.

Corollary 2.3. Under the above notations, it holds:

h(K) = h(K1)⊕ h(K2). (2.9)

3. Gaussian transforms

We keep the notations of the previous section. So that to each v ∈ L1(R+)
continuous, positive and convex function, we associate a positive definite kernel K
which is decomposed in two kernels K1 and K2.

Applying Thm. 2.4 in [6] one easily obtains the following Proposition.

Proposition 3.1. There exist a probability space (Ω,F ,P) and two independent,
centered Gaussian processes Xi = (Xi(t); t ≥ 0) with covariances Ki, i = 1, 2.

Moreover, a Hilbert space h(Xi) ⊂ L2(Ω,F ,P) is associated to each process Xi

by means of an isomorphism of Hilbert spaces defined through
∑
s a(s)Ki(s, ·) 7→∑

s a(s)Xi(s), where a has finite support, i = 1, 2.
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As a result, if one defines X = (X1, X2) and Z = X1 + X2, they are centered
gaussian processes as well and it holds:

h(X) = h(X1)⊗ h(X2) (3.1)

h(Z) = h(X1)⊕ h(X2). (3.2)

Moreover, h(X) is isomorphic to h(K1)⊗ h(K2) and h(Z) is isomorphic to h(K).

The above processes are all continuous as applications from [0,∞[ into the space
L2(Ω,F ,P). The continuity of their trajectories will be obtained in Theorem 3.4.

Definition 3.2. Let V denote the class of all functions v ∈ L1(R+) which are
continuous, positive and convex. To each v ∈ V the previous Proposition associates
the centered Gaussian process Z, denoted from now on Bv, whose covariance is K
given by (2.2) (equivalently by (2.5)). We say that the (distribution) of Bv is the
Gaussian transform of the function v.

It is worth noticing that the process Z constructed in Proposition 3.1 is not
unique. However, its distribution is uniquely determined by K, so that the Gauss-
ian transform is defined as a probability distribution on the space of trajectories
of the process Z. To alleviate the notations we will abuse the language speaking
of the process Bv as the Gaussian transform of v. We need the following Lemma.

Lemma 3.3. The function R given by (2.1) satisfies∫ ∞
1

√
2R(e−y2)dy ≤ (2 ‖v‖1)

1/2
∫ ∞
1

e−x
2/2dx <∞. (3.3)

Proof. Let x ∈ [1,∞[, then

R(e−x
2

) =

∫ e−x2

0

(e−x
2

− u)v(u)du

≤ e−x
2

∫ e−x2

0

v(u)du

≤ e−x
2

‖v‖1 .

Therefore, ∫ ∞
1

√
2R(e−y2)dy ≤ (2 ‖v‖1)

1/2
∫ ∞
1

e−x
2/2dx <∞.

�

The following Theorem is the main result of this section.

Theorem 3.4. For each fixed T > 0, the Gaussian transform process (Bv(t); t ∈
[0, T ]) admits a uniformly continuous version and its modulus of continuity is

w(Bv, u) ≤ C
√

log
(
1
u

)
R(u), (0 < u < 1), where C > 0 is a constant.

Proof. A straightforward computation gives

E
(
|Bv(t)−Bv(s)|2

)
= 2R(|t− s|).
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So that ‖Bv(t)−Bv(s)‖2 =
√

2R(|t− s|). The conclusion follows from a
straightforward application of a result due to Fernique, see for instance Prop.
3.4 in [6] (see also [1],[2],[3],[4]) . �

Remark 3.5. As a result, note that there is a unique probability distribution Pv
on the space C of continuous functions, endowed with its Borel σ–algebra B(C),
which corresponds to any continuous version of Bv.

4. A representation of Bv as a stochastic integral

Within this section we construct a canonical version of the process (Bv(t); t ∈
[0, T ]), where T > 0 is fixed. To this end, let two independent Brownian motions
W1 = (W1(x); x ≥ 0), W2 = (W2(x); x ≥ 0) defined on some stochastic basis
(Ω,F , (Fx)x∈R+ ,P), be given.

Notice that the functions x 7→ ψ1(x, t) =
(
f(x)
x

)
(1−cos(xt)) and x 7→ ψ2(x, t) =(

f(x)
x

)
sin(xt) are in L2([0,∞[), they are deterministic, so trivially predictable,

therefore, they can be integrated with respect to W1 and W2 respectively. In this
way we obtain a process Z(x, t) given by

Z(x, t) =

∫ x

0

ψ1(y, t)dW1(y) +

∫ x

0

ψ2(y, t)dW2(y), (4.1)

(x, t) ∈ R+ × [0, T ].
The following is one of the main results of this paper.

Theorem 4.1. The process Z defined by (4.1) is a centered Gaussian process with
trajectories in the space C(R+ × [0, T ]) and covariance given by

K((y, s), (x, t)) =

∫ x∧y

0

(
f(r)

r

)2

[(1− cos(rt))(1− cos(rs)) + sin(rt) sin(rs)] dr.

(4.2)
Moreover, the limit Z(x, t) converges in L2 to a limit Z(∞, t), and this convergence
is uniform in t ∈ [0, T ]. The distribution of the process (Z(∞, t); t ∈ [0, T ])
coincides with that of Bv.

Proof. Z is clearly a Gaussian process since it is the sum of two independent sto-
chastic integrals of deterministic functions with respect to the Brownian motions
W1 and W2.

The covariance is the sum of the covariances of each integral since they are
independent. These covariances are, respectively:∫ x∧y

0

ψ1(r, t)ψ1(r, s)dr;

∫ x∧y

0

ψ2(r, t)ψ(r, s)dr.

This yields formula (4.2).
Moreover, notice that for k = 1, 2, supt∈[0,T ]

∫∞
x
ψ2
k(r, t)dr tends to 0 as x→∞

since the functions t 7→ ψ2
k(r, t)1[x,∞[(r) are continuous and decreasing to 0 on the

compact interval [0, T ], thus they converge to 0 uniformly by Dini’s Lemma. As a
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result, Z(∞, t) exists and t 7→ Z(∞, t) is a continuous centered Gaussian process
given by

Z(∞, t) =

∫ ∞
0

(
f(x)

x

)
(1− cos(xt))dW1(x)+

∫ ∞
0

(
f(x)

x

)
sin(xt)dW2(x). (4.3)

Finally, the covariance of Z(∞, ·) is

E (Z(∞, t)Z(∞, s)) =∫ ∞
0

(
f(x)

x

)2

[(1− cos(xt))(1− cos(xs)) + sin(xt) sin(xs)] dx,

so that it coincides with K, the covariance of the Gaussian transform Bv. There-
fore, the distribution of Z(∞, ·) coincides with that of Bv. This completes the
proof. �

The following two Corollaries, provide concrete examples. The first one, is
concerned with Fractional Brownian motion. We recall that fractional Brownian
motion was defined some years ago to model diffusive, subdifussive and superdi-
fussive transport processes, also known as anomalous difussion processes.

Corollary 4.2. The Fractional Brownian Motion with Hurst coefficient H = 1−
γ

2
, where 0 < γ < 1 corresponds to the Gaussian transform√

(2− γ)(1− γ)Bv =
√

2H(2H − 1)Bv

of the function v(t) = t−γ , (t > 0).

Proof. Notice that v is convex on ]0,∞[, and one obtains

(f(x))2 = 2π−1 sin
πγ

2
Γ(1− γ)xγ−1,

for all x ∈ [0,∞[. Moreover,

R(t) =

∫ t

0

∫ s

0

u−γduds =
1

(2− γ)(1− γ)
t2−γ .

As a result, for all s, t ≥ 0,

K(s, t) = R(t) +R(s)−R(|t− s|) =
1

(2− γ)(1− γ)

(
|t|2H + |s|2H − |t− s|2H

)
,

where H = 1− γ/2. �

Remark 4.3. The relationship between the cosine transform of f2(x) and v(t) helps
to explain, in a wide sense, the fundamental choice done by Kupfermann in [5, eq.
(2.3), p.295]. In fact, consider the linear integral convolution equation

Q(t) = Q0 −
∫ t

0

R(t− s)Q(s)ds. (4.4)

In the case H = 1/2, we obtain R(t) = 1 and the above equation has solution
Q(t) = Q0e

−t which corresponds to the standard diffusive model. For general
H = 1− γ/2, the equation is equivalent to the fractional differential equation

Dγ
t Q(t) = −Q(t),
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where Dγ
t denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1)

(equivalently, H ∈ (1/2, 1)). The solution is given by:

Q(t) = Q0t
γ−1Eγ,γ(−tγ),

where Eγ,γ denotes the Mittag-Leffler function. Observe that the choice of the
memory kernel R(t) (equivalently, v(t)) is arbitrary (v convex) in our context.

The choice of an exponential function v yields another example.

Corollary 4.4. Consider v(t) = e−αt, for t ≥ 0. Then the Gaussian transform
of v is represented as

Bv(t) =

∫ ∞
0

1

x

√
2α

π(α2 + x2)
(1− cos(xt))dW1(x) (4.5)

+

∫ ∞
0

1

x

√
2α

π(α2 + x2)
sin(xt)dW2(x).

Proof. v is a convex function and,

(f(x))2 =
2

π

∫ ∞
0

e−αt cos(xt)dx =
2α

π(α2 + x2)
. (4.6)

Consequently,

R(t) =
1

α2
e−αt +

1

α
t− 1

α2
, (4.7)

so that

K(s, t) =
1

α2

(
e−αt + e−αs − e−α|t−s|

)
+

1

α
(t+ s− |t− s|)− 1

α2
. (4.8)

Therefore, the Gaussian transform of v is represented as (4.5).
�

5. Discrete Gaussian transforms

The representation of Bv as a stochastic integral suggests to introduce the fol-
lowing family of processes, based on approximations of Brownian motions by means
of random walks. We start by constructing a canonical probability space where
two mutually independent sequences (ξn)n∈N and (ζn)n∈N of N (0, 1)–random vari-
ables are defined. This is done by a well-known standard procedure on the space
G = RN × RN of all sequences g = (gn)n∈N which have values in R × R, so
that gn = (g1n, g

2
n) and call ξn(g) = g1n ∈ R and ζn(g) = g2n ∈ R, n ∈ N. By

means of Kolmogorov Extension Theorem, one can built up a probability measure
PG on (G,G), where G is the product of Borel σ–fields B(R)⊗N ⊗ B(R)⊗N such
that (ξn)n∈N , (ζn)n∈N be mutually independent identically distributed sequences
of random variables each of them with distribution N (0, 1).

Denote D = D([0,∞[,R) the space of functions w = (w(t); t ≥ 0) defined in
[0,∞[ with values in R, which have left-hand limits (w(t−) = lims→t, s<t w(s)) and
are right-continuous (w(t+) = lims→t, s>t w(s) = w(t)) at each t ≥ 0 (with the
convention w(0−) = w(0)). Thus D represents all possible trajectories followed
by states of particles of the main system. D is endowed with the σ-algebra D
generated by the maps w 7→ w(t) for all t ≥ 0.
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Now, define Ω = D×G, and F = D⊗G. We extend the definition of the variables
ξn, ζn to Ω by writing ξn(ω) = ξn(g), ζn(ω) = ζn(g), for each ω = (w, g) ∈ Ω. and
the probability PG is extended as well to the space Ω through P(A×B) = PG(B),
A ∈ D, B ∈ G.

Consider h > 0 and let us define

Zh(x, t) =
√
h

[x/h]∑
k=1

f(kh)

kh
(sin(kht)ξk + (1− cos(kht))ζk) , (5.1)

for (x, t) ∈ R+ × [0, T ].
Introducing the σ-algebras Fhx generated by {(ξj , ζj) j ≤ [x/h]}, the processes

Wh
1 (x) =

√
h

[x/h]∑
j=1

ξj (5.2)

and

Wh
2 (x) =

√
h

[x/h]∑
j=1

ζj (5.3)

become two independent martingales. It is well known that the distribution of
Wh = (Wh

1 ,W
h
2 ) weakly converges to the distribution of a two-dimensional Wiener

process W = (W1,W2).
We start by studying the convergence in distribution of the family of processes

(Zh).

Lemma 5.1. Let a real separable Banach space b endowed with its Borel σ-field,
be given and let ψ ∈ L2([0,∞[, b) be a locally bounded function. Then, the process

Ih(·) :=

∫ ·
0

ψ(u)dWh
1 (u) =

√
h

[·/h]∑
j=1

ψ(jh)ξj ,

with trajectories in D(R+, b), converges in distribution to

I(·) :=

∫ ·
0

ψ(u)dW1(u),

as h→ 0. Moreover, the process I(·) is a square integrable martingale.

Proof. This Lemma is an easy extension to the Banach space setting of a well-
known consequence of limit theorems for the convergence in distribution of sto-
chastic integrals. Here we state a more direct and self-contained proof.

Since, b is separable, the σ–fields of Borel and that generated by cylinders
coincide when they are completed by null sets under any tight probability mea-
sure. On the other hand, the space D([0,∞[, b) of discontinuous functions with
no oscillatory discontinuities becomes a Polish space with the Skorokhod topology.
Introduce the family of D([0,∞[, b)-modulus as follows:

For any element ϕ ∈ D([0,∞[, b), δ > 0 and each N ∈ N, let

wN (ϕ, δ) := inf
{xi}

max
0<i≤r

sup {‖ϕ(u)− ϕ(v)‖ : u, v ∈ [xi, xi+1[} , (5.4)
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where the infimum extends over the finite sets of points {xi} satisfying{
0 = x0 < x1 < . . . < xr = N,

xi − xi−1 > δ, i = 1, 2, . . . , r.
(5.5)

According to Prokhorov’s Theorem, a family of processes (Φh)h>0 with trajec-
tories in D([0,∞[, b) is tight if and only if the following two conditions below are
satisfied:

(T1) For all N ∈ N,

lim
a→∞

sup
h>0

P

(
sup

x∈[0,N ]

∥∥Φh(x)
∥∥ > a

)
= 0;

(T2) For all N ∈ N, for all ε > 0 it holds that

lim
δ→0

sup
h>0

P
(
wN (Φh, δ) > ε

)
= 0.

A straightforward computation shows that

P

(
sup

x∈[0,N ]

∥∥Ih(x)
∥∥ > a

)
≤ 1

a2
h

N/h∑
j=1

‖ψ(jh)‖2 ≤ N

a2

∫ ∞
0

‖ψ(u)‖2 du, (5.6)

which implies (T1) and

wN (Ih, δ) ≤ sup
u∈[0,N ]

‖ψ(u)‖wN (Wh
1 , δ). (5.7)

Since (Wh
1 )h>0 is a D([0,∞[,R)–tight (even better, it is C([0,∞[,R)–tight), from

the above inequality one obtains easily that (Ih)h>0 satisfies the hypothesis (T2)
and so is D([0,∞[, b)–tight.

Finally, to finish the proof, one needs to prove that for any functional 〈µ, ·〉 in
the dual b∗ of the Banach space b and any finite family x1, . . . , xm of positive real
numbers, the random variables in Rm(

〈µ, Ih(x1)〉, . . . , 〈µ, Ih(xm)〉
)

converge in distribution to

(〈µ, I(x1)〉, . . . , 〈µ, I(xm)〉) .

This is equivalent to show that for any finite family 〈µ1, ·〉, . . . , 〈µm, ·〉 of func-
tionals in b∗ the convergence in distribution of

∑m
i=1〈µi, Ih(xi)〉 to

∑m
i=1〈µi, I(xi)〉

holds (Cramer-Wold device). However,

m∑
i=1

〈µi, Ih(xi)〉 =

∫ maxi xi

0

( ∞∑
i=1

〈µi, ψ(u)〉1[0,xi[(u)

)
dWh

1 (u), (5.8)

so that it suffices to show that for any measurable and bounded real function g,
one has the convergence in distribution of (g ·Wh

1 )x =
∫ x
0
g(u)dWh

1 (u) towards (g ·
W1)x =

∫ x
0
g(u)dW1(u) for any fixed x ∈ [0,∞[. This is an easy consequence of the
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Central Limit Theorem for Local Martingales. Indeed, the associated increasing
processes of the martingales g ·Wh

1 are given by

x 7→ h

[x/h]∑
j=1

(g(jh))2,

and this family converges to ∫ x

0

(g(u))2du,

which is the associated increasing process of the continuous gaussian martingale
g ·W1. Therefore, by the Martingale Central Limit Theorem [7], g ·Wh

1 converges
in distribution, as a process, to g ·W1. As a result g ·Wh

1 (x) converges to g ·W1(x)
for all x ∈ [0,∞[ and the proof is complete. Moreover, since ψ ∈ L2([0,∞[, b) the
process I is a square-integrable martingale. As a result, there exists the terminal
variable I(∞) ∈ b.

�

Consider the Banach space C of real-valued continuous functions defined on
[0, T ], with the uniform norm ‖·‖. Denote Sx(t) = sin(xt), Cx(t) = cos(xt), for
all x ∈ R+. Call D(R+, C) the Polish space of all cadlag functions from R+ to C
endowed with Skorokhod’s topology.

Writing Zh(x, ·) =
√
h
∑[x/h]
k=1

f(kh)
kh (ξkSkh + ζk(1− Ckh)) one notices that each

process x 7→ Zhx = Zh(x, ·) has trajectories in D(R+, C). Moreover,

Zhx = Mh
1 (x) +Mh

2 (x), (5.9)

where Mh
1 (x) =

√
h
∑[x/h]
k=1

f(kh)
kh ξkSkh and Mh

2 (x) =
√
h
∑[x/h]
k=1

f(kh)
kh ζk(1 − Ckh)

are two independent C–valued martingales.

Proposition 5.2. If f is defined by (2.4), the family ((Mh
1 ,M

h
2 ))h>0 converges

in distribution to a Gaussian C ×C-valued martingale M = (M1,M2), which can
be represented as

M(x) =

(∫ x

0

f(u)

u
SudW1(u),

∫ x

0

f(u)

u
(1− Cu)dW2(u)

)
.

And Zh converges in distribution as h→ 0 to the C-valued process Z given by

Z(x, ·) =

∫ x

0

f(u)

u
SudW1(u) +

∫ x

0

f(u)

u
(1− Cu)dW2(u). (5.10)

Proof. The proof follows from Lemma 5.1: take ψ1(u) = f(u)
u Su and ψ2(u) =

f(u)
u (1− Cu), so that

Mh =

(∫ ·
0

ψ1(u)dWh
1 (u),

∫ ·
0

ψ2(u)dWh
2 (u)

)
.

Each component having a limit in distribution with continuous trajectories, the
couple converges in distribution to

M =

(∫ ·
0

ψ1(u)dW1(u),

∫ ·
0

ψ2(u)dW2(u)

)
,
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and the process Zh converges to Z =
∫ ·
0
ψ1(u)dW1(u) +

∫ ·
0
ψ2(u)dW2(u). �

Corollary 5.3. Under the above hypotheses, each martingale Mj (j = 1, 2) has a
final variable Mj(∞), and

Z(∞, ·) =

∫ ∞
0

f(u)

u
SudW1(u) +

∫ ∞
0

f(u)

u
(1− Cu)dW2(u) (5.11)

coincides with the canonical version of Bv.
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